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MODEL

Local Model

• Optimize marginalized probability of coreferent antecedents of each mention span as in [3, 4]

• Extend marginalization with span's candidate entity links

Global Model

• Expressive maximum spanning tree model that allows bi-directional connections between mentions

• Intractable naïve approach to identify all possible spanning trees, we resort to Kirchhoff's Matrix-Tree 

Theorem to efficiently solve this

RESULTS

CONTACT:

klim.zaporojets@ugent.be –

http://klimzaporojets.github.io/

Johannes Deleu Chris DevelderThomas Demeester

INTRODUCTION

Entity Linking

• Discover named entity mentions (e.g., "NATO", "Alliance", etc.)

• Link the discovered mentions to Knowledge Base (e.g., Wikipedia) entries with the goal to disambiguate

Challenges

• Consistent decisions for coreferent entity mentions over the full document

• Coverage of candidate entities (e.g., "Alliance" without correct candidate in Figure 1)

Classical approaches

• Mention-dependent candidates, each mention limited to its own candidate table

• Focus on document-level coherent EL, but not enforced on structural (e.g., coreference) level

• Coreference-level coherence using inefficient Markov Logic-based models

Consistent Document-Level Entity Linking

General idea

• Enforce a single entity link for all the clustered 

(coreferent) mentions together

• Join entity linking candidates of all the clustered mentions, 

increasing thus the coverage

Proposed Algorithm

• Structured prediction task over directed trees

• Use globally normalized model (single joint loss)

• Using of Kirchhoff's Matrix-Tree Theorem algorithm ([1, 2]) to 

efficiently calculate the loss
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Conclusions

• Both joint (Global and Local) architectures outperform the 

baseline on coreference and entity linking tasks

• Global model superior for clusters with multiple mentions 

and mentions without correct candidate entity

TOWARDS CONSISTENT DOCUMENT-LEVEL ENTITY LINKING:
JOINT MODEL FOR ENTITY LINKING AND COREFERENCE RESOLUTION

Analysis 2: Performance (F1-score) on singletons (S) and coreference clusters 
with multiple mentions (M)

Analysis 3: Performance on mentions without correct 
candidateAnalysis 1: General Results (F1-score)

• Our joint models (Local and Global) achieve up to +5% F1-score on entity 

linking task compared to the baseline

• Less noticeable improvement on coreference resolution task

• On average, the Global joint model achieves the best performance

• Global model achieves the most consistent predictions for clusters with multiple mentions (+10.5% F1-score)

• Less noticeable improvement for singletons (S) with similar performance of Local and Global models

• Mention-based baseline cannot solve these cases: no correct 

candidate in the candidate list

• Global model performs best: robust in this challenging 

corner case.

Figure 1: Illustration of the proposed graph models
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