

INTERNET TECHNOLOGY AND DATA SCIENCE LAB

Klim Zaporojets Johannes Deleu Yiwei Jiang

Thomas Demeester

Chris Develder

TOWARDS CONSISTENT DOCUMENT-LEVEL ENTITY LINKING: JOINT MODEL FOR ENTITY LINKING AND COREFERENCE RESOLUTION

INTRODUCTION

Entity Linking

- Discover named entity mentions (e.g., "NATO", "Alliance", etc.)
- Link the discovered mentions to Knowledge Base (e.g., Wikipedia) entries with the goal to disambiguate

Challenges

- Consistent decisions for coreferent entity mentions over the full document
- Coverage of candidate entities (e.g., "Alliance" without correct candidate in Figure 1)

Classical approaches

- Mention-dependent candidates, each mention limited to its own candidate table
- Focus on document-level coherent EL, but not enforced on structural (e.g., coreference) level
- Coreference-level coherence using inefficient Markov Logic-based models

Consistent Document-Level Entity Linking

General idea

- Enforce a single entity link for all the clustered (coreferent) mentions together
- Join entity linking candidates of all the clustered mentions, increasing thus the coverage

Proposed Algorithm

- Structured prediction task over directed trees
- Use globally normalized model (single joint loss)
- Using of Kirchhoff's Matrix-Tree Theorem algorithm ([1, 2]) to efficiently calculate the loss

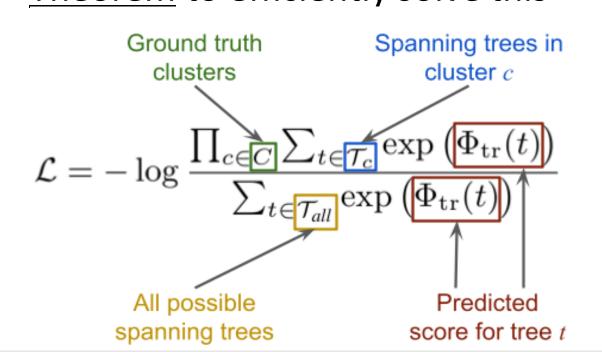
MODEL

Local Model

- Optimize marginalized probability of coreferent antecedents of each mention span as in [3, 4]
- Extend marginalization with span's candidate entity links

Global Model

- Expressive maximum spanning tree model that allows bi-directional connections between mentions
- Intractable naïve approach to identify all possible spanning trees, we resort to Kirchhoff's Matrix-Tree Theorem to efficiently solve this



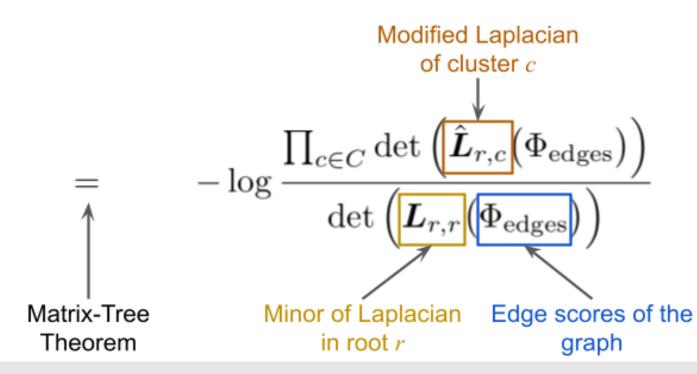
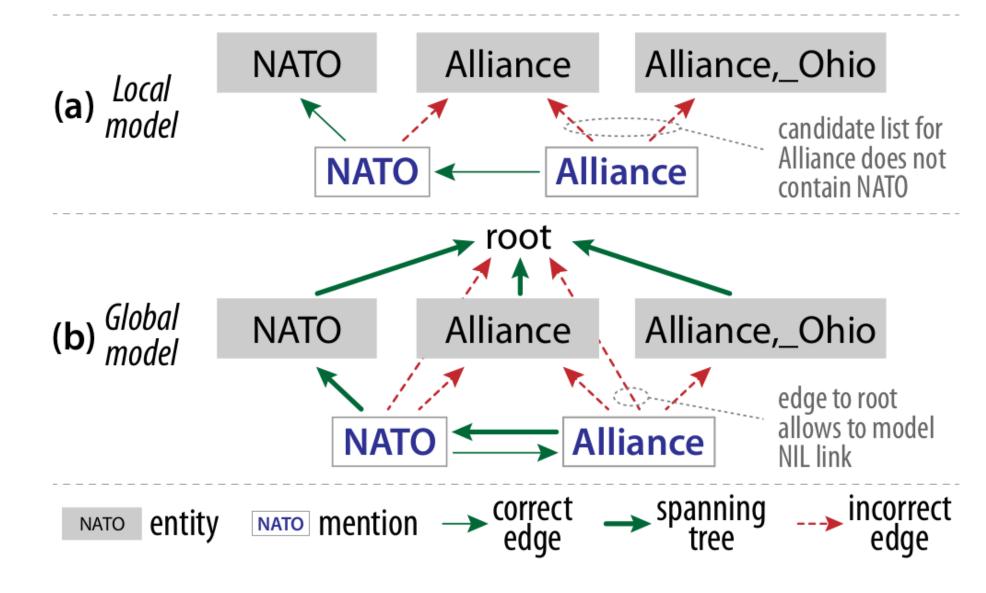


Figure 1: Illustration of the proposed graph models

It is unclear whether **NATO** members will approve the mission which may fall outside the bounds of the Alliance's mandate.



RESULTS

Analysis 1: General Results (F1-score)

	DWIE		AID	$A_{\rm a}^+$	$\mathrm{AIDA_b^+}$	
Setup	Linking	Coref	Linking	Coref	Linking	Coref
Baseline	78.4	94.5	80.7	93.8	74.0	91.5
Local	83.4	94.4	83.1	94.7	75.8	92.3
Global	$\bf 83.9$	94.7	83.7	95.1	$\boldsymbol{76.0}$	92.2

- Our joint models (Local and Global) achieve up to +5% F1-score on entity linking task compared to the baseline
- Less noticeable improvement on coreference resolution task
- On average, the *Global* joint model achieves the best performance

Analysis 2: Performance (F1-score) on singletons (S) and coreference clusters with multiple mentions (M)

	•					
	DWIE		$AIDA_a^+$		${\rm AIDA_b^+}$	
Setup	S	M	S	M	S	M
Baseline	80.4	69.5	82.9	70.7	77.0	57.0
Local	82.6	78.6	84.9	74.8	79.8	61.4
Global	82.6	80.0	85.1	76.8	79.3	63.0

- Global model achieves the most consistent predictions for clusters with multiple mentions (+10.5% F1-score)
- Less noticeable improvement for singletons (S) with similar performance of Local and Global models

Analysis 3: Performance on mentions without correct candidate

Setup	DWIE	$AIDA_{a}^{+}$	$AIDA_{b}^{+}$
Baseline	0.0	0.0	0.0
Local	41.7	27.4	26.9
Global	57.6	50.2	29.7

- Mention-based baseline cannot solve these cases: no correct candidate in the candidate list
- Global model performs best: robust in this challenging corner case.

Conclusions

- Both joint (Global and Local) architectures outperform the baseline on coreference and entity linking tasks
- Global model superior for clusters with multiple mentions and mentions without correct candidate entity

CONTACT:

klim.zaporojets@ugent.be -

http://klimzaporojets.github.io/

[2] Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. 2007. Structured prediction models via the matrix-tree theorem. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pages 141–150. [3] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end neural coreference resolution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2017), pages 188–197. [4] Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to-fine inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT 2018), pages 687–692.