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Key Ideas

1. End-to-end document-level information extraction.

2. Use span-based (Lee et al. 2017) architecture to connect each of the
textual spans with candidate entities.

3. Use candidate entities to inject external knowledge from:

• Knowledge graphs (Wikidata)

• Hyperlinked knowledge bases (Wikipedia)

4. Research Wikipedia-derived prior and context-based attention
schemes to weight candidate entities of each of the textual spans.

Introduction

Task: end-to-end named entity recognition, relation extraction, and corefer-
ence resolution.

Fig. 1: DWIE: some relations and entity types are not explicitly stated in the text.

Data: DWIE (Zaporojets et al. 2021) and DocRED (Yao et al. 2019).

1. Document-level: coreferent entity mentions spread across sentences.

2. Entity and relation annotations on cluster level (entity-centric).

3. Annotations (e.g., relations) are not always explicitly stated in the text:
model can benefit from external knowledge.

Approach:

1. Inject external knowledge using entity representations.

2. Entity representations derived from knowledge graph (Wikidata) and
from hyperlinked textual knowledge base (Wikipedia).

3. Explore attention and prior-based weighting of candidate entities for
each of the textual spans.

Method

Main components of the proposed architecture:

1. Text span i: a span of text in the input document.

2. Candidate entities C associated to each of the spans (EL dictionary).

3. Wikipedia and Wikidata KB representations ξ of entities.

4. Weighted combination α of candidate entity representations.

Fig. 2: Sketch of the proposed architecture.

Entity representation for span i:

eK
i =

∑
cij∈Ci

αij · ξK(cij)

To answer Q1 (see Fig. 2) −→ sources of external knowledge K:

1. Wikidata (KB-graph)

2. Wikipedia (KB-text)

3. Concatenation of both (KB-both).

To answer Q2 (see Fig. 2) −→ weighted combination α for a span i:

1. Prior pij (P (ej|mi) as per Yamada et al. 2016, §3): aij = pij

2. Uniform: αij = 1/|Ci|

3. Attention: αij = FA ([gi; ξK(cij)])

4. AttPrior: αij = FAP
(
[gi; ξK(cij); pij]

) } F∗ is a feed-forward neural network,
gi is the representation of span i.

Results

Ablation study:

Model Avg. F1 ∆
Baseline 63.77 -

External Knowledge
+KB-text 65.55 +1.78
+KB-graph 66.08 +2.31
+both 66.61 +2.84

Weighting Scheme
+Prior 65.65 +1.88
+Uniform 65.68 +1.91
+Attention 66.10 +2.33
+AttPrior 66.61 +2.84

Tab. 1:Average performance.

Performance on rare entity types: external knowledge boosts the perfor-
mance for entities whose types appear less frequently in the corpus:

Qualitative analysis of weighting schemes −→ for text snippet:

“NASA’s Mars rover, "Curiosity" will [...] continue exploring the surface of
the Red Planet.”

Attention-based schemes are able to capture the textual context.
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Q1: Complementarity of both,
Wikidata and Wikipedia knowledge
sources.

Q2: Best result for attention+prior
(AttPrior) weighting scheme.

Attention-based schemes assign
highest weight to correct entity
(Mars).

mailto:severine.verlinden@outlook.be
mailto:klim.zaporojets@ugent.be
http://klimzaporojets.github.io
https://www.projectcpn.eu/

