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Key Ideas Method Results

Main components of the proposed architecture: Ablation study:

1. End-to-end document-level information extraction.

.. : - Model Avg. F1 A
2. Use span-based (Lee et al. 2017) architecture to connect each of the 1. Text span i: a span of text in the input document. e = _
textual spans with candidate entities. 2. Candidate entities C associated to each of the spans (EL dictionary). External Knowledge
3. Use candidate entities to inject external knowledge from: 3. Wikipedia and Wikidata KB representations £ of entities. +KB-text 65.55 +1.78
| +KB-graph  66.08 +2.31 Q1: Complementarity of both,
e Knowledge graphs (Wikidata) 4. Weighted combination « of candidate entity representations. +both 66.61 +2.84 Wikidata and Wikipedia knowledge
e Hyperlinked knowledge bases (Wikipedia) Weighting Scheme sources.
+Prior 65.65 +1.88

4. Research Wikipedia-derived prior and contexi-based attention

KB module
schemes to weight candidate entities of each of the textual spans.

+Uniform 65.68 +1.91
+Attention 66.10 +2.33

text span Q2: Best result for attention+prior

o — Eo i - KB — \ textspan+ +AttPrior 66.61 +2.84 (AttPrior) weighting scheme.
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Introduction E1,E2,E3 £ entities ahted Performance on rare entity types: external knowledge boosts the perfor-
weighte - : _
B E5E6 E2 . E1 \® combination mance for entities whose types appear less frequently in the corpus:
Task: end-to-end named entity recognition, relation extraction, and corefer- BN E/,E8E9 E3 E2 el — (H)— Wl 014
ence resolution. ' ' E3 /@ '
o R 0 0.12 A
' 1 Britain's Prince Harry is engaged to [..] partner Meghan Markle [..]. ‘: \ ,aNd/OT\ QZ:-HOW to Combi_ne candidate % 0.10 -
. 2 [..] the couple are to live in Kensington Palace. i P ? o entity representations? g
| : . i : 'Fikl S 0.08 -
[ ! ' Q - . . -
: 3 [..] Harry's brother Prince William and Kate Middleton, congratulated the couple. : a ‘II I|I Q1: Which KB representations ‘clT—)
Il\ 4. "We are very excited for Harry and Meghan" 5 WIE?PEDIA WIKIDATA are most helpful for IE? g- 0.06 -
____________________________________________________________________ | 2 0.04 -
Coreference Clusters: {'eghan Markle”, "Meghan'}, {"Britain"}, etc. Fig. 2: Sketch of the proposed architecture. g
Entities: Britain (type:country), Harry (type:person,type:royalty,gender:male), etc. . . . 0.02 -
Relations: <Kensington Palace in Britain>, <\Viliam spouse_of Kate Middleton>, etc. Entity representation for span : 0.00 -
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Fig. 1: DWIE: some relations and entity types are not explicitly stated in the text. . ) "
Entity type frequency in training corpus

Data: DWIE (Zaporojets et al. 2021) and DocRED (Yao et al. 2019).

To answer Q1 (see Fig. [2) — sources of external knowledge K:
1. Wikidata (KB-graph)
2. Wikipedia (KB-text)
3. Concatenation of both (KB-both).

1. Document-level: coreferent entity mentions spread across sentences. Qualitative analysis of weighting schemes — for text snippet:

2. Entity and relation annotations on cluster level (entity-centric). “NASA’s Mars rover, "Curiosity” will [...] continue exploring the surface of

the Red Planet.”

Red Planet (film) -E 0.0 0.0
0.0

Red Planet (novel) - 0.2 0.0
Attention-based schemes assign
0.9

Mars - 0.1 highest weight to correct entity

(Mars).

3. Annotations (e.g., relations) are not always explicitly stated in the text:
model can benefit from external knowledge.

Approach: To answer Q2 (see Fig. |2) — weighted combination « for a span «:

1. Inject external knowledge using entity representations. 1. Prior p;; (P(ej|m;) as per Yamada et al. 2016, §3): a;; = p;;

2. Entity representations derived from knowledge graph (Wikidata) and
from hyperlinked textual knowledge base (Wikipedia).

2. Uniform: o;; = 1/|C}|

Prior -

Attention -
AttPrior -

3. Explore attention and prior-based weighting of candidate entities for

3. Attention: o;; = Fa((g;: &x(cij)]) } F. is a feed-forward neural network,
each of the textual spans. ])

4. AttPrior: oy; = Fap([g;; £x(cii); piy g, is the representation of span .
Attention-based schemes are able to capture the textual context.
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